Strain-driven diffusion process during silicon oxidation investigated by coupling density functional theory and activation relaxation technique.
نویسندگان
چکیده
The reaction of oxygen molecules on an oxidized silicon model-substrate is investigated using an efficient potential energy hypersurface exploration that provides a rich picture of the associated energy landscape, energy barriers, and insertion mechanisms. Oxygen molecules are brought in, one by one, onto an oxidized silicon substrate, and accurate pathways for sublayer oxidation are identified through the coupling of density functional theory to the activation relaxation technique nouveau, an open-ended unbiased reaction pathway searching method, allowing full exploration of potential energy surface. We show that strain energy increases with O coverage, driving the kinetics of diffusion at the Si/SiO2 interface in the interfacial layer and deeper into the bulk: at low coverage, interface reconstruction dominates while at high coverage, oxygen diffusion at the interface or even deeper into the bottom layers is favored. A changing trend in energetics is observed that favors atomic diffusions to occur at high coverage while they appear to be unlikely at low coverage. Upon increasing coverage, strain is accumulated at the interface, allowing the oxygen atom to diffuse as the strain becomes large enough. The observed atomic diffusion at the interface releases the accumulated strain, which is consistent with a layer-by-layer oxidation growth.
منابع مشابه
EFFECT OF Si ANTIOXIDANT ON THE RATE OF OXIDATION OF CARBON IN MgO- C REFRACTORY
Progressive conversion/shrinking core (PC-SC) models of constant-size cylinders were exploited to interpret the decarburization reactions of MgO-C-Si bricks heated up under blown air. Chemical adsorption/solid (or pore) diffusion mechanisms governed the reaction rate. With 5% silicon, chemical adsorption vanished at 1000 and 1100°C. The oxidation rate lowered then with temperature. This was due...
متن کاملDensity functional explorations of quadrupole coupling constants for BN, BP, AlN, and AlP graphene–like structures
Stabilizations and atomic level quadrupole coupling constant (CQ) properties have been investigated for graphene–like monolayers (G–monolayers) of boron nitride (BN), boron phosphide (BP), aluminum nitride (AlN), and aluminum phosphide (AlP) structures. To this aim, density functional theory (DFT) calculations have been performed to optimize the model structures and also to evaluate the CQ para...
متن کاملDensity functional explorations of quadrupole coupling constants for BN, BP, AlN, and AlP graphene–like structures
Stabilizations and atomic level quadrupole coupling constant (CQ) properties have been investigated for graphene–like monolayers (G–monolayers) of boron nitride (BN), boron phosphide (BP), aluminum nitride (AlN), and aluminum phosphide (AlP) structures. To this aim, density functional theory (DFT) calculations have been performed to optimize the model structures and also to evaluate the CQ para...
متن کاملDensity Functional Theory Studies of Defects in the (5,5) Silicon Nanotube
We have performed density functional theory (DFT) calculations to investigate the properties of defect in arepresentative armchair model of silicon nanotubes (SiNTs). To this aim, the structures of pristine and defective(5,5) SiNTs have been optimized and the properties such as bond lengths, total energies, binding energies,.formation energies, gap energies, and dipole moments have been evaluat...
متن کاملComputational studies of planar, tubular and conical forms of silicon nanostructures
Density functional theory (DFT) calculations were performed to investigate the properties of planar, tubular and conical forms of silicon nanostructures. The evaluated parameters including averaged bond lengths, binding energies, gap energies and dipole moments were then evaluated for the optimized models of study. The results indicated that the bond lengths between silicon atoms are different ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 147 5 شماره
صفحات -
تاریخ انتشار 2017